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This paper is the fifth in a series exploring the physical consequences of the solidity of highly viscous
liquids. Paper IV proposed a model where the density field is described by a time-dependent Ginzburg-Landau
equation of the nonconserved type with rates in k space of the form �0+Dk2. If a is the average intermolecular
distance, the model assumes that D��0a2. This inequality expresses a long-wavelength dominance of the
dynamics, which implies that the Hamiltonian �free energy� to a good approximation may be taken to be
ultralocal, i.e., with the property that equal-time field fluctuations are uncorrelated in space. Paper IV also
briefly discussed how to generalize the model by including the molecular orientational fields, the stress tensor
fields, and the potential energy density field. In the present paper it is argued that this is the simplest model
consistent with the following three experimental facts: �1� Viscous liquids approaching the glass transition do
not develop long-range order; �2� the glass has lower compressibility than the liquid; �3� the � process involves
several decades of relaxation times shorter than the mean relaxation time. The paper proceeds to list six further
experimental facts of viscous liquid dynamics and shows that these follow naturally from the model.
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I. INTRODUCTION

The idea that viscous liquids approaching the calorimetric
glass transition are solidlike goes back in time at least to
Kauzmann’s and Goldstein’s famous papers from 1948 and
1969 �1,2�. According to these authors, when a molecule
changes position in a highly viscous liquid, this happens in
the form of a so-called flow event, a sudden rearrangement
of a group of molecules. In this picture, which was later
confirmed by computer simulations �3–7�, all motion is vi-
brational in the time between flow events. This indicates that
a viscous liquid is much like a disordered solid �8�.

The property that highly viscous liquids are solidlike and
more to be viewed as “solids that flow” than like ordinary
less viscous liquids, is here termed solidity. This paper is the
fifth in a series �papers I–IV �9–12�� devoted to extracting
the physical consequences of the solidity of highly viscous
liquids. A discussion of solidity, its motivation and conse-
quences, may be found in the introduction to paper IV to
which the reader is referred for further physical background.

A crucial ingredient of solidity is time-scale separation in
the equilibrium viscous liquid. This is the fact that, whereas
some processes occur on the vibrational time scale, i.e., over
picoseconds, the relaxation processes are much slower. De-
pending on temperature the latter occur on time scales of
milliseconds, seconds, days, .... The discussion below fo-
cuses exclusively on modeling the relaxation processes.

A paper utilizing arguments from solid-state elasticity in
viscous liquid dynamics preceding this series was a joint
publication with Olsen and Christensen in 1996, where the
“shoving model” for the temperature dependence of the vis-
cosity �or relaxation time� was proposed �13�. According to
this and related elastic models �14,15� the activation energy
is proportional to the instantaneous shear modulus G� �the
shear modulus measured on a very short time scale�. This
elastic constant increases significantly upon cooling, enough

to explain the observed non-Arrhenius behavior for several
molecular liquids �13–15� �more data, however, are needed
to illuminate whether this generally explains the non-
Arrhenius viscosity�.

The first and second papers of this series focused on the
individual flow events. In paper I a “solidity” length l was
introduced characterizing the length scale below which there
is time between two flow events to establish elastic equilib-
rium. In terms of the average intermolecular distance a, the �
relaxation time �, and the high-frequency sound velocity c�,
the solidity length is given by l4=a3�c�. Close to the calori-
metric glass transition the solidity length approaches 1 �m,
so glass-forming liquids are solidlike on quite large length
scales. The model discussed in paper IV and below focuses
on dynamics below the solidity length.

Papers III and IV �11,12� dealt with the � relaxation pro-
cess and how to explain its seemingly generic high-
frequency loss proportional to �−1/2 �16�. Paper III ap-
proached the problem inductively by noting that the Barlow-
Erginsav-Lamb �BEL� model from 1967 �17� fits data for the
frequency-dependent shear modulus well. Starting from the
BEL model, it was argued that the �−1/2 high-frequency be-
havior arises from a long-time tail mechanism operating over
a range of times shorter than the � relaxation time. This was
justified by a solidity-based argument with the irrelevance of
momentum conservation as an important ingredient, thus al-
lowing for the center of mass to move following a flow
event. As detailed in Refs. �18,19�, momentum conservation
is irrelevant for highly viscous liquids, just as it is irrelevant
in theories for defect motion in crystals.

Paper IV took a deductive approach and proposed a field-
theoretic model giving a concrete realization of the idea of
paper III. In this model, which is the subject also of the
present paper, the generic �−1/2 high-frequency decay of the
� loss derives from a third-order term in the Hamiltonian
�free energy� �20�. The model, besides regarding momentum
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conservation as irrelevant just as in other stochastic models
�e.g., for polymer dynamics �21��, was based on the obser-
vation that density conservation is also apparently disobeyed.
This follows from solidity: A flow event brings the liquid
from one potential energy minimum to another. Any poten-
tial energy minimum corresponds to a state of elastic equi-
librium and thus a state of zero divergence of the stress
tensor—a “solid” state. From the standard equations of elas-
ticity �22� it follows that, upon a local density change, the
leading term in the displacement field in the surroundings is
radial and varies with distance r from the flow event as 1 /r2.
This is a pure shear displacement �22�, implying that in a
coarse-grained description density can change at one point
without changing elsewhere; density has the appearance of
not being conserved. This is condensed into the following
equation for the coarse-grained density dynamics �where b�

is a dimensionless measure of the magnitude of the flow
event taking place at r� at time t��:

�̇�r,t� = �
�

b�	�r − r��	�t − t�� . �1�

Equation �1� does not constitute a theory, of course, since it
does not describe how flow events correlate; it just describes
the equilibrium coarse-grained density fluctuations. Never-
theless, Eq. �1� serves to emphasize that density has the ap-
pearance of not being conserved, a result that is less trivial
than the already mentioned momentum nonconservation de-
riving directly from the extremely large kinematic viscosity
�23� characterizing liquids approaching the glass transition
�19�. The model discussed in paper IV and below incorpo-
rates the main idea behind Eq. �1�, density nonconservation,
into a framework that is explicitly consistent with statistical
mechanics. The model description of the density dynamics is
more involved than that of Eq. �1�, which is too simple be-
cause it corresponds to isotropic flow events. On very large
length scales, though, the model dynamics are described by
Eq. �1�.

In the present paper, supplementing the arguments of pa-
pers III and IV, we adopt a combined inductive-deductive
approach. First, we list three experimental facts characteriz-
ing highly viscous liquids, from which the model is arrived
at as the simplest model consistent with these facts; this con-
stitutes the inductive part of the paper �Secs. II and III�. In
Sec. IV we proceed to discuss six further experimental facts
and their relation to the model. It is argued that most of these
are consequences of the model whereas some, though not
mathematical consequences, appear quite natural when
viewed in light of the model. This constitutes the deductive
part of the paper. Section V gives a brief discussion.

II. THREE FACTS OF VISCOUS LIQUID DYNAMICS

This section lists three facts characterizing glass-forming
liquids approaching the calorimetric glass transition.

Fact 1. There is no long-range density-coupled order.
A popular approach to understanding why the viscosity

increases by ten orders of magnitude for a temperature de-
crease of typically just 10–15% is to assume that some sort
of long-ranged order gradually develops upon supercooling.

According to several prominent models, the dramatic
relaxation-time increase is a consequence of the liquid ap-
proaching a critical point where the relaxation time becomes
infinite �see, e.g., the excellent recent reviews by Tanaka
�24�, Tarjus and co-workers �25�, and Lubchenko and
Wolynes �26�, and their references�. Following the theory of
critical phenomena, it is assumed that there is a diverging
correlation length at the critical point. There is no consensus
on how to define the proposed diverging correlation length,
though, i.e., which quantity develops long-ranged correla-
tions. Numerous x-ray and neutron scattering experiments,
however, show that, whatever this quantity may be, it does
not couple to the density field: No increase of long-range
density fluctuations is observed upon cooling �27�.

Fact 2. The glassy phase has lower compressibility than
the liquid phase.

The glass transition is a falling out of equilibrium taking
place when the liquid relaxation time becomes longer than
the characteristic laboratory time scale. Compliance-type
linear-response quantities like specific heat, compressibility,
and thermal expansion coefficient all decrease when going
from the liquid to the glass �27�. This is easy to understand,
because if each compliance-type linear-response quantity has
contributions from both the fast �vibrational� and the much
slower �configurational, relaxational� degrees of freedom,
these linear-response quantities must decrease at the glass
transition, since below Tg the configurational degrees freeze
and cease to contribute.

Fact 3. The � process is characterized by a distribution of
relaxation times covering several decades of times shorter
than the � relaxation time.

Dielectric relaxation experiments are often fitted by a
frequency-dependent response function corresponding to the
stretched exponential dipole time-autocorrelation function
exp�−�t /��
� �28�. This reflects the fact that viscous liquids,
with few exceptions �29�, do not have simple exponential
time-autocorrelation functions. There is nothing magic about
the stretched exponential; it gives a good single-parameter fit
to data because it reproduces the observed loss peaks that are
always asymmetric to the high-frequency side �28�. The
point to be emphasized here is that, if one rewrites any good
fit to the observed autocorrelation function as a sum of ex-
ponentials, the distribution function must include several de-
cades of relaxation times shorter than the main ��� relaxation
time.

III. THE SIMPLEST MODEL FOR EQUILIBRIUM
VISCOUS LIQUID DYNAMICS CONSISTENT

WITH FACTS 1–3

In this section we consider the questions “Which vari-
able�s� must be included in a useful theory? What are the
simplest dynamics for this �these� variable�s� consistent with
facts 1–3?” Most models for viscous liquid dynamics attempt
to explain both the � relaxation characteristics at a given
temperature and the non-Arrhenius temperature dependence
of the � relaxation time. We here leave aside the non-
Arrhenius problem altogether, although solidity appears to
play an important role for this property as well �15�. The idea
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is to cut the Gordian knot by separating the complex problem
of viscous liquid dynamics into two independent, hopefully
easier problems.

Nowadays, most of physics—from particle physics to
critical phenomena, electromagnetism, and condensed-matter
physics in quite diverse contexts—is formulated in the lan-
guage of field physics. It is natural to expect that viscous-
liquid dynamics should also be described by a field theory
�30�. The question of which variables are relevant thus be-
comes “Which fields must be included in the description?”

The obvious fields are those of standard hydrodynamics:
the momentum, energy, and particle density fields. As men-
tioned, the conservation laws for momentum and energy are
both irrelevant for viscous liquids �18,19�. Thus the standard
hydrodynamic description, based on continuity equations for
these quantities, loses its physical significance. Despite the
fact that solidity also implies �apparent� density nonconser-
vation, the situation is different for the particle density
field—after all, molecules are not continuously exchanged
with the surroundings in the way that momentum and energy
are. We thus base the model sought for on the density field
��r , t�. The question of which other fields to include in order
to have a complete description of the macroscopic dynamics
is dealt with at the end of this section.

The next question is “What are the simplest possible dy-
namics?” The density dynamics of viscous liquids have two
parts, the vibrations �phonons� and the relaxing part of the
dynamics. At low temperatures the � relaxation time is much
larger than picoseconds, and the two dynamics are very well
separated. Thus it makes good sense to ignore the vibrational
part of the dynamics. Assuming that the relevant field theory
is based on a Hamiltonian �i.e., a free energy functional�, the
question next is how to model the dynamics consistent with
the Hamiltonian. The answer to this is well known, use
Langevin dynamics which is the generic way to arrive at
dynamics from statics �21,31�: If the relevant variables are
denoted by Q1 , . . . ,Qn, the Hamiltonian is H�Q1 , . . . ,Qn�,
and 
=1/kBT, the Langevin equation is Q̇i=−�i�i�
H� /�Qi

+�i�t�, where �i�t� is a Gaussian white noise term with zero
mean obeying ��i�t�� j�t���=2�i	ij	�t− t��. These equations
reproduce the canonical probability proportional to
exp�−
H�, thus ensuring consistency with statistical me-
chanics �21,31�.

The system consists of N molecules with coordinates
r j in volume V, and the density field is defined by ��r�
=� j	�r−r j�. As always when there is translational invariance
it is convenient to go to k space; the range of allowed k
vectors is limited to the discrete set consistent with periodic
boundary conditions. We define the kth density component as

�k =
1

�N
�

j

eik·rj . �2�

With this normalization �k fluctuations become independent
of volume for V→� �N /V=const� and the relaxational part
of the static structure factor S�k� is given by S�k�= ��k�−k�
for V→�. The Langevin equation �21,31� is

�̇k = − �k
��
H�
��−k

+ �k�t� . �3�

The complex Gaussian white noise term obeys �k
*�t�=�−k�t�

and ��k�t��k�
* �t���=2�k	k,k�	�t− t��. Equation �3� is a stan-

dard time-dependent Ginzburg-Landau equation. Because
�k

* =�−k this equation in conjunction with the equation for �−k
is equivalent to two real Langevin equations, one for the real
part of �k and one for its imaginary part.

Following standard field theory procedure, we split H into
a sum of a quadratic “free-field” term H0 and an “interac-
tion” term H� containing all higher-order terms:

H = H0 + H�. �4�

Regarding H� as a perturbation, let us first focus on the dy-
namics embodied in the free-field time-autocorrelation func-
tion denoted by ��k�0��−k�t��0. If there were no higher-order
terms, because S�k�= ��k�−k�, the free-field Hamiltonian
would be given by


H0 =
1

2�
k

�k�−k

S�k�
. �5�

Substituting this into Eq. �3�, we find that the free-field time-
autocorrelation function ��k�0��−k�t��0 is an exponential with
decay rate �k given by

�k =
�k

S�k�
. �6�

When H� is just a perturbation, the distribution of relaxation
rates is roughly given by the distribution of �k’s.

Since molecules cannot disappear, one would a priori as-
sume �k
k2 �the “conserved” case—model B of Ref. �32��,
reflecting the expectation that density at sufficiently long
wavelengths obeys the diffusion equation. This, however, is
inconsistent with fact 2 for the following reason. At the glass
transition the liquid high-frequency compressibility becomes
the glass compressibility. Fact 2 states that this quantity is
lower than the liquid �dc� compressibility, implying that in
the equilibrium liquid there are relaxational volume fluctua-
tions on a macroscopic length scale taking place on a finite
time scale �the � time scale�. �This is also known from mea-
surements of the frequency-dependent bulk modulus, show-
ing that the low-frequency bulk modulus is smaller than the
high-frequency bulk modulus �33�, as well as from the so-
called Mountain peak �relaxation mode� of light scattering
�34,35�.� This implies that the relaxational part of the static
structure factor S�k� has a nonzero limit for k→0. Therefore,
if �k
k2, by Eq. �6� the rate of the relaxational macroscopic
density fluctuations would go to zero for k→0, i.e., it would
be arbitrarily slow for large enough samples. This violates
fact 2. Consequently, density fluctuations cannot be de-
scribed by �k
k2 as k→0, and density must have the ap-
pearance of a nonconserved field.

Given that �k
k2 does not work, the simplest alternative
is that �k is independent of k: �k=�0 �“nonconserved”
case—model A of Ref. �32��. This, however, does not work
for the following reason. For ka	1 the static �relaxational�
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structure factor S�k� is of order 1, whereas for k→0 S�k�
converges to the ratio between liquid �relaxational� com-
pressibility and that of an ideal gas at the same density. This
ratio is typically of order 10−2 �36�. Thus, if �k=�0, Eq. �6�
would imply a range of relaxation times covering at most 2
decades. This is inconsistent with fact 3, which requires sev-
eral decades of relaxation times. �It would also be physically
counterintuitive to have long-wavelength density fluctuations
decaying much faster than short-wavelength fluctuations.�

Since �k
k2 contradicts fact 2 and �k=�0 contradicts fact
3, the next possibility is a combination of the two:

�k = �0 + Dk2. �7�

For this to be consistent with fact 3, however, D must be
quite large: Unless the Dk2 term makes �k vary by several
decades for the range of allowed k vectors, the model will
not work for the same reason that �k=�0 does not work.
Since the maximum k obeys ka	1, this means that the fol-
lowing must be assumed:

D � �0a2. �8�

The inequality �8� expresses a long-wavelength dominance
of the dynamics, because it implies that the Dk2 term domi-
nates the rate expression Eq. �7� for a range of small k vec-
tors corresponding to wavelengths much larger than a.
Whereas in papers III and IV this inequality was justified by
microscopic arguments, it here comes about from a search
for the simplest possible model consistent with facts 1–3.

In conjunction with fact 1, long-wavelength dominance of
the dynamics implies that static �equal-time� correlations of
the density fluctuations at differing points can have little
influence on the dynamics. Consequently, in the name
of simplicity such correlations will be assumed to be
absent altogether. A field theory with no equal-time correla-
tions between fields at different points in space is termed
“ultralocal”. In k space the assumption of ultralocality means
that all coefficients are k independent in the expansion in
orders of �k: H0=�k�1/2A��k�−k and H�
=�k,k���3 /3�N��k�k��−k−k�+... �37�.

A similar long-wavelength dominance of the deeply su-
percooled dynamics is crucial also in Schweizer and Saltz-
man’s theory of activated hopping in polymer melts �38�.
Specifically, the atomistic structure in S�k� is here coarse-
grained over, resulting in a statistical segment level �nanom-
eter scale� description where confining forces are quantified
via the amplitude of thermal density fluctuations, which are
proportional to the isothermal compressibility, i.e., given by
S�0�. In other words, it is assumed that the most important
dynamic length scale is significantly larger than a monomer.

The assumption that equal-time density fluctuations are
uncorrelated in space does not mean that the model is
trivial—there are nonzero correlations between density fluc-
tuations at different positions at different times. The situation
is analogous to that of a trivial spin model �i.e., with no
spin-spin interactions� with Kawasaki dynamics, where a
spin flip at one point can take place only if a neighboring
spin simultaneously flips in the opposite direction. If by
chance a given up spin is surrounded by a large island of up

spins, the given spin will be frozen for some time; thus the
dynamics of this spin is influenced by those of its surround-
ing spins even though there are no equal-time spin-spin cor-
relations.

As a minimum, a theory for viscous liquid dynamics
should make it possible to calculate all macroscopic
frequency-dependent linear-response quantities. Response
functions are determined from the fluctuation-dissipation
theorem by first calculating time-autocorrelation functions of
variables like total dipole moment �dielectric constant�, pres-
sure �bulk modulus�, shear stress �shear modulus�, or energy
�specific heat�. Note that the frequency-dependent bulk
modulus may be determined from density fluctuations alone,
implying that the pressure is not an independent variable in
the present context, so the stress tensor has only five relevant
components.

These considerations lead �paper IV� to the following
general recipe for modeling viscous liquid dynamics:

�1� The relevant degrees of freedom are fields
��1��r� , . . . ,��n��r� defined as �a� the densities of the different
molecules, �b� the densities of the molecules’ various
configurational variables reflecting the molecular symmetry,
�c� the five stress tensor fields of the traceless stress tensor,
and �d� the potential energy density field.

�2� The Hamiltonian H �free energy� is ultralocal and con-
sists of scalar �i.e., rotationally and translationally invariant�
terms.

�3� For each field the dynamics are described by a time-
dependent Ginzburg-Landau equation, i.e., a Langevin equa-
tion of the form

�̇k
�j� = − �k

�j���
H�
��−k

�j� + �k
�j��t� , �9�

where �k
�j��t� is a Gaussian white-noise term obeying

��k
�i��t��k�

�j�*�t��=2�k
�i�	i,j	k,k�	�t− t��.

�4� For each density field the Langevin equation rates are
given by �k

�j�=�0
�j�+D�j�k2 where D�j���0

�j�a2; for all other
fields the rates are k independent: �k

�j�=�0
�j�.

Inclusion of the extra fields makes it possible to calculate
the frequency-dependent dielectric constant and shear modu-
lus, as well as all eight fundamental frequency-dependent
thermoviscoelastic response functions �39�: the isochoric and
isobaric specific heats, the isothermal and adiabatic com-
pressibilities, the isobaric expansion coefficient, the adiabatic
contraction coefficient, and the isochoric and adiabatic pres-
sure coefficients.

IV. SIX FURTHER FACTS OF VISCOUS LIQUID
DYNAMICS AND THEIR INTERPRETATION

IN LIGHT OF THE MODEL

Below are listed six experimental facts, each nontrivial in
the sense that there is no logically compelling connection
between it and facts 1–3. Nevertheless, when viewed in light
of the model, these facts appear as natural consequences.

Fact 4. Below the � loss peak, the loss virtually follows
the Debye prediction, i.e., is proportional to �. Thus there
is an effective cutoff at long times in the relaxation-time
distribution.
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� loss peaks, which are typically measured by dielectric
relaxation experiments, are generally asymmetric toward the
high-frequency side �28�. At low frequencies they follow the
Debye prediction �
1/ �1+ i����, i.e., the loss is virtually
proportional to frequency; the same applies, e.g., for the
frequency-dependent shear modulus �40�. This implies that,
if the linear response is written formally as a sum of Debye
processes, there is an effective cutoff at long times in the
relaxation-time distribution.

Given the spatial disorder of any viscous liquid, it is not
surprising that Debye peaks are rarely observed, but the ob-
served effective cutoff at long relaxation times is highly non-
trivial. If the non-Debye relaxation were due to effects of
disorder-induced activation-energy broadening, the obvious
guess would be a Gaussian activation-energy distribution.
This, however, implies loss peaks that are symmetric in a
log-log plot, which is inconsistent with experiment.

Because there is a minimum relaxation rate in the model,
a long relaxation-time cutoff is automatically implied. Of
course, this cutoff was built into the model via Eq. �7�. The
point we wish make is merely that this equation was not
justified from fact 4, but as the simplest way to rationalize
facts 1–3. Fact 4 follows.

Fact 5. Above the � loss-peak frequency the loss appears
to be generically close to �−1/2.

The � process is conveniently monitored by dielectric re-
laxation experiments �28�. Above the loss-peak frequency
the dielectric loss decays following an approximate power
law. The shape of the loss peak often changes with tempera-
ture, i.e., time-temperature superposition �TTS� is often not
obeyed. It is now generally agreed that Johari-Goldstein 

processes may be found at much lower frequencies than pre-
viously thought �41�. Thus, since � and 
 relaxations have
quite different temperature dependence, low-lying 
 pro-
cesses easily lead to TTS violations even in the Hertz regime
and below. According to this reasoning the “generic” charac-
teristics of the � process are observed only when TTS is
accurately obeyed. A study of the dielectric loss of ten mo-
lecular liquids published in 2001 �16� indicated that, when
TTS is accurately obeyed, the exponent � is close to 1/2. A
recent study comprising 45 molecular liquids found that the
minimum slope �min above the loss peak �characterizing the
inflection point and thus giving the best approximate power-
law fit� is generally fairly close to −1/2 �60% of the liquids
studied obey −0.6��min�−0.4� �42�.

As shown in Ref. �20� and paper IV, to lowest order in
perturbation theory a third-order term in the Hamiltonian im-
plies that the loss varies as �−1/2 for �’s considerably higher
than the loss peak frequency.

Fact 6. The � relaxation process is dominated by small-
angle jumps.

Many models assume “cooperatively rearranging regions”
that do not interact with one another. In this spirit molecules
either move significantly �those involved in the flow event�
or do not move at all �those in the surroundings�. Thus mo-
lecular jumps would be expected to be fairly large and mo-
lecular orientations likewise to change considerably follow-
ing a flow event. The molecular jump angles cannot be
probed by linear-response experiments, but fortunately they
can by NMR experiments. The result of Böhmer and co-

workers �43,44� is that small-angle jumps dominate.
This observation calls for an explanation in terms of so-

lidity: The reason that small-angle jumps dominate must be
that—if the flow event picture is not completely wrong—the
overall picture is dominated by the small adjustments in the
surroundings required to reestablish elastic equilibrium after
a flow event. A simple solidity-based calculation �paper I�
shows that the jump-angle distribution P��� varies as 1 /�2,
consistent with NMR findings �43� �this distribution is not
normalizable because there are infinitely many molecules in
the surroundings—in reality the distribution is cut off at very
small angles because elastic effects do not propagate beyond
the solidity length�. Clearly, the largest weight is given to
small jump angles.

When fact 6 is contemplated in light of the model, it
should be noted �paper IV� that the crucial �0�0 identity
expressing apparent density nonconservation can come about
only if a flow event is followed by small solidity-based ad-
justments of molecular positions in the far surroundings.
Thus fact 6 follows from the model’s nonzero �0.

Fact 7. Viscous slowing down is not accompanied by sig-
nificant changes of the static structure factor.

A popular and obvious explanation of the dramatically
increasing relaxation time for liquids approaching the calori-
metric glass transition is that upon cooling there is a gradual
buildup of some sort of long-range order, in many models
signaling that there is a critical point not far below Tg where
the relaxation time becomes infinite �24–26�. As mentioned,
numerous experiments have looked for long-range order, but
found none �27�. Not only is there no long-range order, but
the liquid structure as probed by S�k� via x-ray or neutron
scattering experiments changes little over the temperature
range where the relaxation time changes by ten or more or-
ders of magnitude. It is matter of taste whether or not one
regards this as surprising �45�. A model with no spatial cor-
relations at any temperature trivially predicts that there are
no nontrivial changes of the static structure factor upon cool-
ing. In this sense fact 7 follows from the model.

Fact 8. The Debye-Stokes-Einstein relation is often vio-
lated in viscous liquids.

An important finding of the 1990s was that translational
motions often decouple from and become 1–3 decades faster
than rotations �46�. Somehow, translations are enhanced
compared to what one expects from the Debye-Stokes-
Einstein relation, which estimates the single-particle diffu-
sion constant Ds from the viscosity �. Although this relation
a priori applies only for macroscopic particles, there is no
obvious reason that a molecule on average should move a
much longer distance than a during the rotational correlation
time �the � relaxation time�.

The generally accepted picture of Debye-Stokes-Einstein
violations is that these reflect dynamic heterogeneity �46�.
Although dynamic heterogeneity is not described by the
model, it is not inconsistent with the model which provides
only a coarse-grained description of the dynamics. Debye-
Stokes-Einstein violations, in fact, fit nicely with the model
if one assumes that the single-particle diffusion constant is
roughly equal to the diffusion constant D of Eq. �7�; in this
case the long-wavelength dominance inequality �8� simply
expresses Debye-Stokes-Einstein violation.
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Fact 9. The dynamics are not sensitive to the chemistry.
At any given temperature, the relaxation characteristics—

linear as well as nonlinear—are similar for all glass-forming
liquids. Viscous liquids do differ as to, e.g., whether or not
there is a clearly defined 
 relaxation in the liquid phase, or
whether or not time-temperature superposition applies. But
these differences do not appear to correlate with chemical
characteristics in any simple fashion. For instance, as regards
their dielectric and thermodynamics properties, liquids held
together exclusively by van der Waals forces do not differ
systematically from those involving hydrogen bonds �28�.
Similarly, the frequency-dependent shear modulus of viscous
metallic liquids forming bulk metallic glasses is indistin-
guishable from that of typical molecular liquids �47�. The
overall conclusion is that it is not possible from macroscopic
measurements alone to determine which chemical bonds are
involved �except from the fact that the temperature range
where the glass transition takes place trivially provides infor-
mation about the strength of the intermolecular forces�. As a
further confirmation of fact 9 it should be noted that mixtures
behave much like pure liquids and that, again, it is not gen-
erally possible from purely macroscopic measurements to
tell whether or not a given liquid is a mixture.

This insensitivity to the chemistry is a highly significant
fact. For some reason the dynamics are fairly indifferent to
details of the molecular interactions, but why? In the model,
chemistry independence is expected because of the long-
wavelength dominance of the dynamics—clearly, chemistry
plays little role for dynamics on length scales much larger
than the size of a molecule. The chemistry independence is
similar to that of critical phenomena. This has motivated
many attempts to draw parallels to the theory of critical phe-
nomena by assuming that viscous slowing down is accompa-
nied by some kind of long-range order responsible for the
observed quasiuniversality. The present model has no such
assumption, but on the contrary assumes that there are only
short-range static correlations of the relevant fields. Only
when it comes to the dynamics do long length scales play
important roles. Note that the model does not imply absolute

chemistry independence, because the free energy as a func-
tion of the fields depends on chemical composition.

V. DISCUSSION

It is a long-standing assumption that viscous-liquid dy-
namics are cooperative. Mode-coupling theory �48,49� is an
interesting case where cooperativity enters via the coupling
of single-particle motion to the surroundings, resulting in a
modification of the single-particle motion with drastic con-
sequences at low temperatures �infinite relaxation time at a
finite temperature in the simplest and most studied version of
the theory�. The present model is also cooperative, but in a
rather simple-minded sense, with two elements of cooperat-
ivity: �1� Density nonconservation �implying �0�0� is a co-
operative effect because it involves the solidity-based move-
ment of molecules far from a flow event; �2� the long-
wavelength assumption Eq. �8� expresses cooperativity in the
sense that motion over long wavelengths is mainly respon-
sible for the � process.

The purpose of this paper was to show that the model of
paper IV has implications that were not put into the model.
The overall credibility of the model is strengthened by the
fact that the model is consistent with—and in most cases
predicts—several experimental facts that are independent of
the model inputs. We would finally like to emphasize that,
despite the macroscopic reasoning of this paper, the long-
wavelength dominance inequality Eq. �8� reflects properties
of the individual flow events �50�.
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	�k
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	�k
2�
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